1. GENERAL

1.1 SECTION INCLUDES

A. Dewatering, depressurizing, draining, and maintaining trenches, shaft excavations, structural excavations, and foundation beds in a stable condition, and controlling ground water conditions for tunnel excavations.

B. Protection of excavations and trenches from surface runoff.

C. Disposing of removed ground water by approved methods.

1.2 REFERENCES

A. ASTM D 698 - Test Methods for Moisture-Density Relations of Soils and Soil-Aggregate Mixtures, Using 5.5-lb (2.49 kg) Rammer and 12-inch (304.8 mm) Drop.

1.3 DEFINITIONS

A. Ground water control includes both dewatering and depressurization of water-bearing soil layers.

1. Dewatering includes lowering the water table and intercepting seepage which would otherwise emerge from slopes or bottoms of excavations, or into tunnels and shafts, and disposing of removed ground water by approved methods. The intent of dewatering is to increase the stability of tunnel excavations and excavated slopes; prevent dislocation of material from slopes or bottoms of excavations; reduce lateral loads on sheeting and bracing; improve excavating and hauling characteristics of excavated material; prevent failure or heaving of the bottom of excavations; and to provide suitable conditions for placement of backfill materials and construction of structures, piping and other installations.

2. Depressurization includes reduction in piezometric pressure within strata not controlled by dewatering alone, as required to prevent failure or heaving of excavation bottom or instability of tunnel excavations.

B. Excavation drainage includes keeping excavations free of surface and seepage water.
C. Surface drainage includes the use of temporary drainage ditches and dikes and installation of temporary culverts and sump pumps with discharge lines as required to protect the Work from any source of surface water.

D. Equipment and instrumentation for monitoring and control of the ground water control system includes piezometers and monitoring wells, and devices, such as flow meters, for observing and recording flow rates.

1.4 PERFORMANCE REQUIREMENTS

A. Conduct subsurface investigations as needed to identify ground water conditions and to provide parameters for design, installation, and operation of ground water control systems.

B. Design a ground water control system, compatible with requirements of Federal Regulations 29 CFR Part 1926 and City Standard Specification Section 022022 - Trench Safety for Excavations, to produce the following results:

1. Effectively reduce the hydrostatic pressure affecting:
 a) Excavations (including utility trenches);
 b) Tunnel excavation, face stability or seepage into tunnels.

2. Develop a substantially dry and stable subgrade for subsequent construction operations.

3. Preclude damage to adjacent properties, buildings, structures, utilities, installed facilities, and other work.

4. Prevent the loss of fines, seepage, boils, quick condition, or softening of the foundation strata.

5. Maintain stability of sides and bottom of excavations.

C. Provide ground water control systems which may include single-stage or multiple-stage well point systems, eductor and ejector-type systems, deep wells, or combinations of these equipment types.

D. Provide drainage of seepage water and surface water, as well as water from any other source entering the excavation. Excavation drainage may include placement of drainage materials, such as crushed stone and filter fabric, together with sump pumping.

E. Provide ditches, berms, pumps and other methods necessary to divert and drain surface water away from excavations.

F. Locate ground water control and drainage systems so as not to interfere with utilities, construction operations, adjacent properties, or adjacent water wells.
G. Assume sole responsibility for ground water control systems and for any loss or damage resulting from partial or complete failure of protective measures, and any settlement or resultant damage caused by the ground water control operations. Modify ground water control systems or operations if they cause or threaten to cause damage to new construction, existing site improvements, adjacent property, or adjacent water wells, or affect potentially contaminated areas. Repair damage caused by ground water control systems or resulting from failure of the system to protect property as required.

H. Provide an adequate number of piezometers installed at the proper locations and depths as required to provide meaningful observations of the conditions affecting the excavation, adjacent structures, and water wells.

I. Provide environmental monitoring wells installed at the proper locations and depths as required to provide adequate observations of hydrostatic conditions and possible contaminant transport from contamination sources into the work area or into the ground water control system.

J. Decommission piezometers and monitoring wells installed during design phase studies and left for Contractors monitoring and use, if applicable.

1.5 ENVIRONMENTAL REQUIREMENTS

A. Comply with requirements of agencies having jurisdiction.

B. Comply with Texas Commission on Environmental Quality (TCEQ) regulations and Texas Water Well Drillers Association for development, drilling, and abandonment of wells used in dewatering system.

C. Prior to beginning construction activities, file Notice of Intent (NOI) for Storm Water Discharges Associated with Construction Activity under the Texas Pollutant Elimination System (TPDES) General Permit No. TXR150000, administered by the Texas Commission on Environmental Quality (TCEQ). The general permit falls under the provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code.

D. Prepare submittal form and submit to TCEQ along with application fee.

E. Upon completion of construction, file Notice of Termination (NOT) for Storm Water Discharges Associated with Construction Activity under the TPDES General Permit with the TCEQ.

F. Obtain all necessary permits from agencies with control over the use of ground water and matters affecting well installation, water discharge, and use of existing storm drains and natural water sources. Because the review and permitting process may be lengthy, take early action to pursue and submit for the required approvals.

G. Monitor ground water discharge for contamination while performing pumping in the vicinity of potentially contaminated sites.
H. Conduct sampling and testing of ground water and receiving waters as outlined in Article 3 below.

2. PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. Equipment and materials are at the option of Contractor as necessary to achieve desired results for dewatering.

B. Eductors, well points, or deep wells, where used, shall be furnished, installed and operated by an experienced contractor regularly engaged in ground water control system design, installation, and operation.

C. All equipment must be in good repair and operating order.

D. Sufficient standby equipment and materials shall be kept available to ensure continuous operation, where required.

3. EXECUTION

3.1 GROUND WATER CONTROL

A. Perform a subsurface investigation by borings as necessary to identify water bearing layers, piezometric pressures, and soil parameters for design and installation of ground water control systems. Perform pump tests, if necessary to determine the drawdown characteristics of the water bearing layers.

B. Provide labor, material, equipment, techniques and methods to lower, control and handle ground water in a manner compatible with construction methods and site conditions. Monitor effectiveness of the installed system and its effect on adjacent property.

C. Install, operate, and maintain ground water control systems in accordance with the ground water control system design. Notify the City’s Construction Inspector in writing of any changes made to accommodate field conditions and changes to the Work. Revise the ground water control system design to reflect field changes.

D. Provide for continuous system operation, including nights, weekends, and holidays. Arrange for appropriate backup if electrical power is primary energy source for dewatering system.

E. Monitor operations to verify that the system lowers ground water piezometric levels at a rate required to maintain a dry excavation resulting in a stable subgrade for prosecution of subsequent operations.

F. Where hydrostatic pressures in confined water bearing layers exist below excavation, depressurize those zones to eliminate risk of uplift or other instability of excavation or installed
works. Allowable piezometric elevations shall be defined in the ground water control system design.

G. Remove ground water control installations.

1. Remove pumping system components and piping when ground water control is no longer required.

2. Remove piezometers and monitoring wells when directed by the City Engineer.

3. Grout abandoned well and piezometer holes. Fill piping that is not removed with cement-bentonite grout or cement-sand grout.

H. During backfilling, dewatering may be reduced to maintain water level a minimum of 5 feet below prevailing level of backfill. However, do not allow that water level to result in uplift pressures in excess of 80 percent of downward pressure produced by weight of structure or backfill in place. Do not allow water levels to rise into cement stabilized sand until at least 48 hour after placement.

I. Provide a uniform diameter for each pipe drain run constructed for dewatering. Remove pipe drain when it has served its purpose. If removal of pipe is impractical, provide grout connections at 50-foot intervals and fill pipe with cement-bentonite grout or cement-sand grout when pipe is removed from service.

J. Extent of construction ground water control for structures with a permanent perforated underground drainage system may be reduced, such as for units designed to withstand hydrostatic uplift pressure. Provide a means for draining the affected portion of underground system, including standby equipment. Maintain drainage system during operations and remove it when no longer required.

K. Remove system upon completion of construction or when dewatering and control of surface or ground water is no longer required.

L. In unpaved areas, compact backfill to not less than 95 percent of Standard Proctor maximum dry density in accordance with ASTM D 698. In paved areas (or areas to receive paving), compact backfill to not less than 98 percent of Standard Proctor maximum dry density in accordance with ASTM D 698.

3.2 REQUIREMENTS FOR EDUCTOR, WELL POINTS, OR DEEP WELLS

A. For above ground piping in ground water control system, include a 12-inch minimum length of clear, transparent piping between every eductor well or well point and discharge header so that discharge from each installation can be visually monitored.

B. Install sufficient piezometers or monitoring wells to show that all trench or shaft excavations in water bearing materials are pre-drained prior to excavation. Provide separate piezometers for
monitoring of dewatering and for monitoring of depressurization. Install piezometers and monitoring wells for tunneling as appropriate for Contractor's selected method of work.

C. Install piezometers or monitoring wells not less than one week in advance of beginning the associated excavation (including trenching).

D. Dewatering may be omitted for portions of underdrains or other excavations, but only where auger borings and piezometers or monitoring wells show that soil is pre-drained by an existing system such that the criteria of the ground water control system design are satisfied.

E. Replace installations that produce noticeable amounts of sediments after development.

F. Provide additional ground water control installations, or change the methods, in the event that the installations according to the ground water control system design do not provide satisfactory results based on the performance criteria defined by the ground water control system design and by these specifications.

3.3 EXCAVATION DRAINAGE

A. Contractor may use excavation drainage methods if necessary to achieve well drained conditions. The excavation drainage may consist of a layer of crushed stone and filter fabric, and sump pumping in combination with sufficient wells for ground water control to maintain stable excavation and backfill conditions.

3.4 MAINTENANCE AND OBSERVATION

A. Conduct daily maintenance and observation of piezometers or monitoring wells while the ground water control installations or excavation drainage are operating in an area or seepage into tunnel is occurring. Keep system in good condition.

B. Replace damaged and destroyed piezometers or monitoring wells with new piezometers or wells as necessary to meet observation schedule.

C. Cut off piezometers or monitoring wells in excavation areas where piping is exposed, only as necessary to perform observation as excavation proceeds. Continue to maintain and make observations, as specified.

D. Remove and grout piezometers inside or outside the excavation area when ground water control operations are complete. Remove and grout monitoring wells when directed by the City Engineer.

3.5 MONITORING AND RECORDING

A. Monitor and record average flow rate of operation for each deep well, or for each wellpoint or eductor header used in dewatering system. Also monitor and record water level and ground water recovery. These records shall be obtained daily until steady conditions are achieved, and twice weekly thereafter.
B. Observe and record elevation of water level daily as long as ground water control system is in operation, and weekly thereafter until the Work is completed or piezometers or wells are removed, except when City Engineer determines that more frequent monitoring and recording are required. Comply with Construction Inspector’s direction for increased monitoring and recording and take measures as necessary to ensure effective dewatering for intended purpose.

3.6 SAMPLING, TESTING AND DISPOSAL OF GROUND WATER

A. It is the intent that the Contractor discharge groundwater primarily into the existing storm water system in accordance with City Ordinance, Article XVI, Section 55-203, only if the groundwater is uncontaminated and the quality of the ground water is equal to or better than the quality of the receiving stream.

B. The Contractor shall prevent ground water from trench or excavation dewatering operations from discharging directly into the storm water system prior to testing and authorization. Ground water from dewatering operations shall be sampled and tested, and disposed of by approved methods.

C. Laboratory analysis of groundwater and receiving water quality is to be performed by the Contractor at the Contractor’s expense, prior to commencing discharge, and groundwater analysis shall be performed by the Contractor at a minimum of once per week. Contractor shall coordinate with the City Storm Water Department on all laboratory analysis. Laboratory analysis of groundwater shall also be performed at each new area of construction prior to discharge from that location.

D. Sample containers, holding times, preservation methods, and analytical methods, shall either follow the requirements in 40 CFR Part 136 (as amended), or the latest edition of "Standard Methods for the Examination of Water and Wastewater." Any laboratory providing analysis must be accredited or certified by the Texas Commission on Environmental Quality according to Title 30 Texas Administrative Code (30 TAC) Chapters 25 for the matrices, methods, and parameters of analysis, if available, or be exempt according to 30 TAC §25.6.

E. Analysis of the ground water discharge shall show it to be equal to or better than the quality of the first natural body of receiving water. This requires testing of both the receiving water and a sample of the ground water. All parts of this procedure shall be complete prior to any discharge of ground water to the storm water system.

F. Steps to Determine Legitimate Discharge:

1. Identify the First Receiving Water.
 a) When the first body of water is a fresh water system (Nueces River or Oso Creek), the analysis typically fails because the local ground water will likely be too high in Total Dissolved Solids (TDS). In the case of a perched aquifer, the ground water may turn out fairly fresh, but local experience shows this to be unlikely.
 b) If the receiving water is a marine environment, proceed with Step 2 below to compare the ground water quality to receiving water quality.
2. Compare Ground Water Discharge Quality to Receiving Water Quality.

The following table, Ground Water Discharge Limits, indicates that the parameters to compare to the receiving water are Total Dissolved Solids (TDS) and Total Suspended Solids (TSS). If the ground water results are equal to or better than the receiving water, then the discharge may be authorized as long as the discharge does not exceed the other parameters which would indicate hydrocarbon contamination. Note that the receiving water only needs to be tested initially as a baseline and the ground water shall be tested weekly to ensure compliance.

GROUND WATER DISCHARGE LIMITS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ground Water Monitoring Frequency</th>
<th>Receiving Water Monitoring Frequency</th>
<th>Maximum Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids (TDS)</td>
<td>Initial + Weekly</td>
<td>Once Prior to Discharge</td>
<td>< Receiving Water</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>Initial + Weekly</td>
<td>Once Prior to Discharge</td>
<td>< Receiving Water</td>
</tr>
<tr>
<td>Total Petroleum Hydrocarbons</td>
<td>Initial + Weekly</td>
<td></td>
<td>15 mg/L</td>
</tr>
<tr>
<td>Total Lead</td>
<td>Initial + Weekly</td>
<td></td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td>Benzene</td>
<td>Initial + Weekly</td>
<td></td>
<td>0.005 mg/L</td>
</tr>
<tr>
<td>Total BTEX</td>
<td>Initial + Weekly</td>
<td></td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td>Polynuclear Aromatic Hydrocarbons</td>
<td>Initial + Monthly</td>
<td></td>
<td>0.01 mg/L</td>
</tr>
</tbody>
</table>

3. Analyze Ground Water for Hydrocarbon Contamination.

All other parameters listed on the Ground Water Discharge Limits table must be analyzed prior to ground water discharge to the storm water system. If no limits are exceeded, ground water discharge to the storm water system may be authorized following notification to the MS4 operator (City of Corpus Christi) and all Pollution Prevention Measures for the project are in place. Analytical results shall be on-site or readily available for review by local, state or federal inspectors. Note that this step is frequently done simultaneously with Step 2 above to shorten analytical processing time.

4. Pollution Prevention Measures.

A storm water pollution prevention plan or pollution control plan shall be developed and implemented prior to any ground water discharges to the storm water system. The plan’s objectives are to limit erosion and scour of the storm water system, and minimize Total Suspended Solids (TSS) and other forms of contamination, and prevent any damage to the storm water system. Note that ground water discharges must cease immediately upon the first recognition of contamination, either by sensory or analytical methods. If the discharge of groundwater results in any damages to the storm water system, the responsible party...
shall remediate any damage to the storm water system and the environment to the satisfaction of the Storm Water Department and/or any State or Federal Regulatory Agency.

5. MS4 Operator Notification.

The MS4 operator shall be notified prior to ground water discharge to the storm water system. Contractor shall contact the designated City MS4 representative to request authorization to discharge ground water to the storm water system.

Notification shall include:

- Project Name:
- Responsible Party:
- Discharge Location:
- Receiving Water:
- Estimated Time of Discharge:
- Linear Project: Yes / No
- Pollution Prevention Measures Implemented:
- Statement indicating all sampling and testing has been conducted and meets the requirements of a legitimate discharge.

G. Discharges to Wastewater System

In the event that the groundwater does not equal or exceed the receiving water quality, an alternative disposal option would include pumping to the nearest sanitary sewer system. Discharge to the sanitary sewer system requires a permit from the Wastewater Department. If discharging to temporary holding tanks and trucking to a sanitary sewer or wastewater treatment plant, the costs for these operations shall be negotiated.

Contractor shall contact the Pretreatment Group for City Utility Operations to obtain a Wastewater Discharge Permit Application for authorization to discharge to the wastewater system. Authorization approval will include review of laboratory analysis of the ground water and estimated flow data. Note that groundwater discharges must cease immediately upon the first recognition of contamination, either by sensory or analytical methods. If the discharge of groundwater results in any damages to the wastewater collection system or wastewater overflows, the responsible party shall remediate any damage to the wastewater collection system and the environment to the satisfaction of the Wastewater Department and/or any State or Federal Regulatory Agency.

H. Other groundwater disposal alternatives or solutions may be approved by the Engineer on a case by case basis.

3.7 SURFACE WATER CONTROL

A. Intercept surface water and divert it away from excavations through the use of dikes, ditches, curb walls, pipes, sumps or other approved means.

B. Divert surface water into sumps and pump into drainage channels or storm drains, when
approved by the City Engineer. Provide settling basins when required by the City Engineer.

C. Storm water that enters the excavation can be pumped out as long as care is taken to minimize solids and mud entering the pump suction and flow is pumped to a location that allows for sheet flow prior to entering a storm water drainage ditch or storm water inlet. An alternative to sheet flow is to pump storm water to an area where ponding occurs naturally without leaving the designated work area or by manmade berm(s) prior to entering the storm water system. Sheet flow and ponding is required to allow solids screening and/or settling prior to entering the storm water system. Storm water or groundwater shall not be discharged to private property.

4. MEASUREMENT AND PAYMENT

Unless otherwise specified on the Bid Form, control of ground water will not be measured and paid for separately, but shall be considered subsidiary to other bid items.